Emission Analysis Approach for EPA's Multi-scale Motor Vehicle & Equipment Emission System (MOVES)

John Koupal

U.S. EPA

Office of Transportation & Air Quality

13th CRC On-Road Vehicle Emissions Workshop April 7-9, 2003

Acknowledgements

- Connie Hart, Dave Brzezinski, Bob Giannelli, Chad Bailey (EPA)
- Ed Nam (Ford Motor Company)

MOVES Documentation Available

- Draft MOVES Design and Implementation Plan
- Draft MOVES GHG Emission Analysis Plan
- On-Board "Shootout" Reports
 - Test Program Report (Sensors, Inc.)
 - Contractor Analysis Reports (UC Riverside, NCSU, ENVIRON)
 - Overview and Results (EPA)
- Modal emission analysis (NCSU)
- Proof-Of-Concept Physical Model (Ed Nam)
- Analysis of CO₂/CH₄ Emissions (ERG)
- Mobile Source Observation Database update (ERG)
- www.epa.gov\otaq\ngm.htm or newgen@epa.gov

Not Covered Today...

- Background (CRC 2001, 2002)
- Multi-scale design framework
- MOVES emission processes
- Vehicle characterization
- Emission adjustments
- Advanced technologies
- Fleet and activity-related analyses

MOVES Implementation Plan

- MOVES GHG (on-road)
 - Draft release: Early 2004
 - Fuel consumption, CO₂, CH₄, N₂O inventories 1999 forward
 - Would include life cycle and policy evaluation components
- Full on-road implementation: Fall 2005
 - Add HC, CO, NOx, Toxics, PM, NH₃, SO₂
 - Multi-scale analysis capability
 - Will replace MOBILE6
- Off-Road: 2006
 - Will replace NONROAD

Macroscale

MOVES Analysis Scales

Mesoscale

Sources: EPA OAQPS, ORD

MOVES Software Framework

- Language: Java[®]
- Database-driven structure
 - Open-source relational database (MySQL)
 - Enables modularity, easy updates with new data
- Graphical user interface or batch mode
- Designed for multiple-computer processing
- Output reporting and visualization

Emission Analysis Background

- Analysis of Factors Important for CO₂/CH₄ (ERG)
 - Preliminary analysis to determine most important variables
- On-Board Shootout (UCR, NCSU, ENVIRON, EPA)
 - Evaluation different methods of using on-board (PEMS) data for multi-scale inventory modeling
- Modal Binning Proof-of-Concept (NCSU)
 - Analysis of modal binning issues using dyno, PEMS, RSD and I/M data
- PERE: Physical Emission Rate Estimator (Ed Nam)
 - Develop model based on physical principles which could be used to populate emission rate database where test data is lacking

Modal Binning

- Group activity and emissions into "Bins"
 - Shootout and NCSU work focused on Vehicle Specific Power (VSP)
 - Accounts for speed, acceleration, grade, road load
- Any driving pattern can be modeled based on distribution of time spent in bins
 - Adds major flexibility compared to MOBILE
- Provides common emission rates for macroscale, mesoscale, microscale

Vehicle Specific Power (VSP)

Jiménez-Palacios (MIT, 1999)

- VSP = $v^*(a^*(1+\epsilon) + g^*grade + g^*C_R) + 0.5\rho^*C_D^*A^*v^3/m$
- Applied generic coefficients for light-duty:
 - VSP (kW/ton) = $v^*(a^*(1.1) + g^*grade + 0.132) + 0.0003^*v^3$
- Can be applied to heavy-duty as well

CMEM / PERE

- $VSP = [A*v + B*v^2 + C*v^3 + m*v*(a + g*grade))]/m$
- Use road load (A/B/C) coefficients:
 - Light-duty: derived from dyno hp target (IM240 lookup)
 - Heavy-duty: available estimates of C_r, C_d, Frontal Area

Emissions by 14 VSP Bins Recommended by NCSU

Fuel Rate By VSP Bin and Average Cycle Speed ARB UCC Dataset (26 1983-1998 LDV/LDTs)

Average Cycle Speed

Supplementing VSP

- VSP by itself does not explain variability observed across full range of driving
- MOVES GHG Emission Analysis Plan proposed binning by average speed and VSP
- Limitations of binning by average speed:
 - Doesn't address physical nature of bias
 - Requires knowing average speed of driving pattern, rather than relying on instantaneous driving only

New Concept: Engine Specific Power (ESP)

- VSP doesn't capture engine losses, e.g. friction, which affect fuel consumption
- ESP proposed by Nam:
 - Adds surrogate engine loss term
 - ESP = VSP + γ *Speed
 - $-\gamma$ = "engine friction constant"
 - Accounts for K, RPM/speed, engine displacement
 - Enables ESP to be calculated knowing only VSP and instantaneous speed
- Can use same 14 bins defined by NCSU

Estimating γ

Physical approach

Approximate engine friction term KNV_d (Ross, CMEM) with simplified estimates of RPM/speed, displacement/mass, engine friction coefficient

Empirical approach

 $- \gamma^*$ Speed = ESP $- VSP = (Fuel * LHV * \eta / m) - VSP$

Calibration approach

– Treat γ as "error term" to account for unexplained bias

Fuel Rate By ESP Bin and Average Cycle Speed ARB UCC Dataset (26 1983-1998 LDV/LDTs)

Average Speed

Fuel Consumption Validation ARB UCC Dataset (26 1983-1998 LDV/LDTs)

Each Cycle Predicted Independently Based on Binned Fuel Consumption Rates From The Other 7 Cycles

Fuel Consumption Validation

Total Fuel Consumption Per Cycle, Averaged Across Vehicles

Each Cycle Predicted Independently

NOx Validation: Percent Difference From Observed ARB UCC Dataset (26 1983-1998 LDV/LDTs)

Each Cycle Predicted Independently Based on Binned NOx Emission Rates From The Other 7 Cycles

NOx Validation

Total NOx Per Cycle, Averaged Across Vehicles

Each Cycle Predicted Independently

CO Validation ARB UCC Dataset (26 1983-1998 LDV/LDTs)

Each Cycle Predicted Independently Based on Binned CO Emission Rates From The Other 7 Cycles

CO Validation

Total CO Per Cycle, Averaged Across Vehicles

Each Cycle Predicted Independently

HC Validation ARB UCC Dataset (26 1983-1998 LDV/LDTs)

Each Cycle Predicted Independently Based on Binned HC Emission Rates From The Other 7 Cycles

HC Validation

Total HC Per Cycle, Averaged Across Vehicles

Each Cycle Predicted Independently

Proposed Method For Populating Emission Rate Database

- Empirical binning analysis where representative sample exists
- Use PERE to fill data "holes"
 - Advanced technology vehicles
 - Few data points
 - PERE calibrated using empirical data for "nearest" bin

Data To Be Used in MOVES GHG

- Fuel consumption/emissions
 - EPA Mobile Source Observation Database
 - Adding additional programs:
 - CARB
 - CRC E-55
 - UC Riverside (CMEM, Heavy-Duty Trailer, Other Studies)
 - Environment Canada
 - WVU (Thousands of heavy-duty chassis tests)
 - Other state and university programs
 - Initial PEMS work (Shootout)
- Fleet characterization (e.g. populations)
 - Polk, VIUS
- Activity characterization (e.g. VMT, driving patterns)
 - HPMS, NPTS, VIUS, light-duty and heavy-duty driving studies

Representing High Emitters

Not an issue for MOVES GHG

- Floating some initial proposals looking ahead to full implementation
- More detail in Emission Analysis Plan

Traditional Approach

- Discrete emitter categories (e.g. "high" & "normal")
- Emission level = average within each category
- Category weightings based on age

Proposed MOVES Approach

- Emissions expressed as parametric distributions instead of averages
- Several options for implementing this

Why Distributions Matter

Box Plot of IM240 HC emissions by category

Mileage > 50,000

Emitter Category

Single Distribution Illustration

Emitter Category Illustration

Malfunction Category Illustration

Malfunction Category Thresholds (defined across multiple pollutants)

Unrepresented Category Illustration

Life Cycle – The Big Picture

Source: Argonne National Lab

Life Cycle Analysis In A Nutshell

Source: Adrian Raeside

Accounting for Life Cycle Important

Source: GREET, Argonne National Lab

Next Steps for Development of MOVES GHG Fuel/Emission Rates

- Peer Review and finalization of MOVES GHG Emission Analysis Plan
- Complete data gathering and MSOD upload
- Continued refinement of ESP binning approach
- Develop emission rate tools
 - "Binning" utility (data crank) for empirical analysis
 - PERE for filling data holes
- N₂O, CH₄, Starts, Fuels, Temperature, A/C analysis
- Populate MOVES Emission Rate Database
- GREET integration for life cycle analysis